Electrically controlled non-volatile switching of magnetism in multiferroic heterostructures via engineered ferroelastic domain states


In this work we addressed a key challenge in realizing multiferroics-based reconfigurable magnetic devices, which is the ability to switch between distinct collective magnetic states in a reversible and stable manner with a control voltage. Three possible non-volatile switching mechanisms have been demonstrated, arising from the nature of the domain states in pervoskite PZN-PT crystal that the ferroelectric polarization reversal is partially coupled to the ferroelastic strain. Electric impulse non-volatile control of magnetic anisotropy in FeGaB/PZN-PT and domain distribution of FeGaB during the ferroelectric switching have been observed, which agrees very well with simulation results. These approaches provide a platform for realizing electric impulse non-volatile tuning of the order parameters that are coupled to the lattice strain in thin-film heterostructures, showing great potentials in achieving reconfigurable, compact, light-weight and ultra-low-power electronics.

NPG Asia Mater.
Tianxiang Nan
Tianxiang Nan
Assistant Professor