Large E-field tunability of magnetic anisotropy and ferromagnetic resonance frequency of co-sputtered Fe50Co50-B film

Abstract

Fe27.45Co30.19B42.36 (referred to as FeCoB) films with 100 nm in thickness were co-sputtered on (011)-cut lead zinc niobate-lead titanate (PZN-PT) single crystal substrate under RF powers of 80 W for Fe50Co50 target and 120 W for B target, respectively. The anisotropy field HK of the FeCoB/PZN-PT multiferroic composite is increased by more than 10 times, from 56 to 663 Oe under the E-field from 0 to 7 kV/cm due to the strong magnetoelectric coupling, corresponding to a large tunability of HK of 86.7 Oe cm/kV. At the same time, the self-bias ferromagnetic resonance frequency fFMR is dramatically shifted upwards by an electric field from 2.57 to 9.02 GHz with an increment of 6.45 GHz, corresponding to E-field tunablity of fFMR 921.4 MHz.cm/kV. These features demonstrate that FeCoB/PZN-PT multiferroic laminates prepared under an integrated circuits process are promising in fabrication of E-field tunable monolithic microwave integrated circuits (MMIC) devices and their components.

Publication
J. Appl. Phys.
Tianxiang Nan
Tianxiang Nan
Assistant Professor

Related